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The nonlinear evolution of hydrodynamically unstable flames is studied numerically
within the context of a hydrodynamic model, where the flame is confined to a surface
separating the fresh mixture from the hot combustion products. The numerical
scheme uses a variable-density Navier–Stokes solver in conjunction with a level-
set front-capturing technique for the numerical treatment of the propagating front.
Unlike most previous studies that were limited to the weakly nonlinear Michelson–
Sivashinsky equation valid for small density changes, the present work places no
restriction on the density contrast and thus elucidates the effect of thermal expansion
on flame dynamics. It is shown that the nonlinear development leads to corrugated
flames with a transverse dimension that is significantly larger than the wavelength
corresponding to the most amplified disturbance predicted by the linear theory, and
which is determined by the overall size of the system. The flame structure consists
of wide troughs and relatively narrow cusp-like crests, and propagates ‘steadily’
at a constant speed, larger than the speed of a planar flame. The propagation
speed increases as the cells widen, but eventually reaches a constant value that
remains independent of the mixture’s composition and of the transverse length. The
dependence of the incremental increase in speed on thermal expansion is found to
be nearly linear; for realistic values of thermal expansion it may be as large as 15%
to 20%. In sufficiently large domains the dynamics is found to be extremely sensitive
to background noise that may result, for example, from weak turbulence. Small-scale
wrinkles appear sporadically on the flame surface and travel along its surface, causing
a significant increase in the overall speed of propagation, up to twice the laminar
flame speed.

1. Introduction
Premixed flames appear typically as corrugated surfaces with relatively sharp edges

pointing towards the burnt gas; see for example figure 1 showing the image of a
wrinkled methane–air inverted conical flame (known also as a V-flame) taken by
Sattler, Knaus & Gouldin (2002). The image is bright in the reactants, as a result
of Mie scattering of laser light off the micrometre-sized silicone oil droplets that
were added to the fresh mixture and consumed in the flame zone, and dark in
the products. The photograph illustrates the formation of a corrugated flame front
separating burnt from unburnt gas with a cusp-like structure. The appearance of sharp
folds and creases in the flame front, and the wrinkling observed over the surface of
large expanding flames (Palm-Leis & Strehlow 1969; Ivashchenko & Rumyantsev
1978; Bradley, Cresswell & Puttock 2001) are manifestations of the hydrodynamic
instability, discovered independently over half a century ago by Darrieus (1938) and
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Figure 1. Image of a wrinkled methane–air V-flame in a turbulent flow of low intensity,
showing a wrinkled flame surface with cusp formation. The image is bright in the reactants,
due to Mie scattering off silicone oil droplets that were added to the fresh mixture and
consumed within the flame, and dark in the products. Courtesy of F. Gouldin.

Landau (1944). The hydrodynamic instability, which results from the large change
in density between the fresh mixture and the hot combustion products, implies that
planar flames are unconditionally unstable, and that wrinkles of short wavelength
grow faster than wrinkles of long wavelength. This result, however, is inadequate for
short-wavelength disturbances that are comparable with the flame thickness, because
these may induce distortions of the flame structure that were not accounted for
in the Darrieus–Landau description. Much work has been done over the years to
incorporate the effects of the diffusion processes within the flame zone in the analysis
and clarify their stabilizing influences. Notable are the study by Markstein (1964) who
assumed a dependence of the flame speed on the local curvature of the front through
a phenomenological coefficient that has become known as the Markstein length, and
the more rigorous asymptotic analysis of Pelce & Clavin (1982) and Matalon &
Matkowsky (1982) that clarified the role of thermal, mass and viscous diffusion in
stability by deriving a dispersion relation with an explicit dependence on all relevant
physicochemical parameters.

The nonlinear development of a hydrodynamically unstable flame is important to
understanding the structure and dynamics of fast enough and large-scale flames,
where diffusion effects play a limited role. Unlike the more common cellular
flames that depend on the mixture composition and have a characteristic size
proportional to the wavelength of the most amplified disturbance of linear theory,
hydrodynamically unstable flames have typically much larger cell sizes controlled by
the overall dimension of the system. Lind & Whitson (1977) performed experiments
on large expanding flames using lean hydrocarbon–air mixtures in 5–10 m thin plastic
hemispherical bags, which tore loose at the early stage of propagation leaving the
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flame to expand freely at nearly constant pressure. The flame first appeared as a
blue expanding hemisphere, but as its size increased it became rough, with a ‘pebbled’
appearance. Cell sizes of approximately 10–50 cm were observed with the propagation
speed increasing to 1.6–1.8 times the laminar flame speed.

Computational simulations of the Navier–Stokes equations for a multi-component
chemically reacting mixture in large domains and over sufficiently long time have met
significant difficulties, so that progress has relied primarily on analytical and numerical
studies of simplified models. One such model is the Michelson–Sivashinsky (MS)
equation obtained in the weakly nonlinear long-wave asymptotic limit (Sivashinsky
1977; Michelson & Sivashinsky 1977). The MS model is valid when the heat release
is small, relative to the thermal energy of the fresh mixture namely for values of the
thermal expansion coefficient σ ∼ 1. Although it provides valuable physical insight
in the nonlinear development of the Darrieus–Landau instability, its application is
limited by the fact that σ ≈ 6−8 for real gas mixtures. There have been attempts
to extend the MS model by including higher-order terms (e.g. Bychkov 1998;
Kazakov & Liberman 2002), but these studies did not produce results that are
significantly different. There have also been a few numerical studies concerned with
the Darrieus–Landau instability (Denet & Haldenwang 1995; Kadowaki 1999), but
these were mostly concerned with the initial development of the instability.

In this paper we numerically investigate the nonlinear development of
hydrodynamically unstable freely propagating flames for realistic values of σ, within
the context of a hydrodynamic theory. In the hydrodynamic theory (Matalon &
Matkowsky 1982; Matalon, Cui & Bechtold 2003), the whole flame associated with
the region where chemical reaction, diffusion, heat conduction and viscous effects take
place is assumed to be thin when compared to the representative fluid-flow length-
scale associated, for example, with the size of the wrinkles on the flame front. The
flow field is then determined by solving the incompressible hydrodynamic equations
on each side of the resulting flame sheet, with different densities for the burnt and
unburnt gases. By resolving the internal structure of the flame on the smaller diffusion
scale, appropriate jump conditions for the pressure and velocities across the sheet, as
well as an equation for the flame speed, are obtained as matching conditions. The
resulting model is a nonlinear free-boundary problem supplemented by conditions that
describe influences of the diffusion processes within the flame zone and an equation
that describes the instantaneous shape and position of the flame sheet. Because of
its simplicity, and the smaller number of parameters involved, the model permits
the description of multi-dimensional flames with sufficient accuracy over a wide
range of conditions. Furthermore, the simulations can be carried out on a uniform
grid containing a moderate number of points, which reduces the computational cost
significantly. We note that the complete governing equations contain a larger number
of parameters and, since the flame zone is normally a few orders of magnitude smaller
than the hydrodynamic length, a proper and accurate description of multi-dimensional
flames by direct numerical simulation would require a prohibitively large number of
points. This would also generate the need to use a sophisticated adaptive gridding
technique, the development of which is a challenge in itself.

The numerical scheme employed here for simulating the evolution of multi-
dimensional flames based on a hydrodynamic model was recently proposed by
Rastigejev & Matalon (2006). It has already been tested on a number of benchmark
problems and shown to be stable and accurate. The results presented here further
show that for σ −1 � 1 the predictions of the full nonlinear model are in quantitative
agreement with those obtained by the weakly nonlinear model of the MS equation,
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Figure 2. The flame as a surface of density discontinuity; the illustration corresponds to a
periodically extended pole solution of the MS equation.

but our main objective is to investigate the dynamics of flame fronts with no
restriction imposed on the density contrast, thus elucidating the effect of thermal
expansion on flame dynamics. We show that the consequence of the hydrodynamic
instability is the formation of steady-propagating cusp-like structures that resemble
the experimentally observed flame fronts of figure 1. Short-wavelength corrugations
introduced through initial disturbances tend to merge forming a single peak structure,
whose scale is controlled by the overall size of the system. In moderate-size domains,
these structures remain stable and propagate significantly faster than a planar flame
does. In large domains, although a cusp-like structure develops on the average, small
random subwrinkles appear sporadically on the flame sheet propagating along its
surface and affecting its overall speed. Non-steady pebble-like structures have indeed
been observed on the surface of large-scale flames (Istratov & Librovich 1969; Groff
1982; Bradley 1999). It is argued that these secondary structures do not represent
a self-sustained phenomenon, but rather are a peculiar response to an ever-present
background noise (e.g. numerical). External noise supplies small disturbances which
are rapidly magnified by the hydrodynamic instability, giving rise to the small-scale
wrinkles that contaminate the flame surface. Evidence of this conjecture is presented
in the reported simulations.

The paper is organized as follows. A brief description of the hydrodynamic model
is given in § 2. A summary of the results of the linear theory is presented in § 3,
followed by a brief description of the weakly nonlinear theory that leads to the MS
equation. Exact and numerical solutions of the MS equation are also reviewed in this
section. In § 4 the numerical scheme used to address the full nonlinear model is first
presented followed by results of simulations that investigate the effects of thermal
expansion and external noise on the flame dynamics. Concluding remarks are made
in the last section.

2. Hydrodynamic model
In the hydrodynamic theory, the flame of thickness lf is assumed to be thin

compared to the representative lengthscale L of the fluid flow. The characteristic
flame thickness may be based, for example, on the thermal thickness Dth/SL where
Dth is the thermal diffusivity of the mixture and SL the laminar flame speed. Viewed on
the hydrodynamical scale, the flame zone is seen as a sheet separating fresh unburnt
gas from burnt combustion products; see figure 2. The hydrodynamic model was
derived systematically by Matalon & Matkowsky (1982) as a limit process expansion
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for small δ = lf/L (see also Matalon et al. 2003). Typically, premixed flames are nearly
a millimetre thick, so that with L of the order of few centimetres, δ � 0.1. Since
the Prandtl number Pr for commonly used combustible mixtures is of order unity,
the Reynolds number Re ≡ ρuSLL/µ= (δPr)−1 � 1. The flow field on either side
is, therefore, determined by solving the incompressible Euler equations with different
densities, ρb for the burnt and ρu for the unburnt gases respectively, with small O(δ)
viscous corrections. Across the flame sheet the Rankine–Hugoniot relations, with O(δ)
correction terms describing the influences of the diffusion processes occurring within
the thin but finite flame zone, must be satisfied. Similarly, the flame speed relation
contains O(δ) terms accounting for variations in flame curvature and hydrodynamic
strain. In this work we consider a slightly simpler model associated with Markstein
(1964), which retains the dependence of flame speed on flame curvature only, and
uses the Rankine–Hugoniot relations without modification. Accounting for stretch
effects and incorporating the O(δ) corrections in the jump relationships requires a
non-trivial generalization of the numerical scheme that will be addressed in future
studies.

The mathematical formulation consists of solving the Euler equations

∇ · v = 0, (2.1)

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p, (2.2)

where v is the velocity field and p is the (small) deviation of the pressure from its
ambient value. The density is a piecewise constant function, given by

ρ =

{
ρu (unburnt gas)
ρb (burnt gas).

(2.3)

Let the flame sheet be described by the function ψ(x, t) = 0 with the convention that
the unit normal n = ∇ψ/|∇ψ | is directed towards the burnt gas, so that Vf = −ψt/|∇ψ |
is the propagation speed (in a fixed coordinate system) back along the normal. The
Rankine-Hugoniot relations are

[[ ρ(v · n − Vf ) ]] = 0,

[[ n × (v × n) ]] = 0,

[[ p + ρ(v · n)(v · n−Vf ) ]] = 0,


 (2.4)

where the bracket operator [[ ]] defines the jump in the quantity across the flame
sheet. The flame speed Sf defined as the normal velocity of the unburnt gas relative
to the flame front, namely Sf ≡ v∗ · n − Vf where v∗ = v(ψ =0−), satisfies the relation

Sf = SL(1 − Lκ), (2.5)

where κ = −∇ · n is the mean curvature and the coefficient L is the Markstein length.
Being associated with effects resulting from the internal flame structure, L is of the
order of the flame thickness lf . Although Markstein introduced this coefficient in a
phenomenological way, the more rigorous asymptotic analysis provides an explicit
expression for L, exhibiting a dependence on the composition of the mixture and,
in particular, on the equivalence ratio (Matalon et al. 2003). For hydrocarbon–air
mixtures, for example, L is generally positive and decreases monotonically as the
mixture varies from lean to rich conditions. The opposite is true for light fuels, such
as hydrogen–air mixtures, where L is found to decrease as the mixture varies from
rich to lean conditions and may be even negative in sufficiently lean mixtures.
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3. Linear and weakly nonlinear analysis
A plane deflagration wave, propagating into a quiescent mixture at a constant speed

SL, is a simple solution of equations (2.1)–(2.5). The velocity and pressure across the
front, located at y = −SLt and separating the fresh mixture from the hot combustion
products, are piecewise constants given by

v =

{
0,

(σ − 1)SL,
p =

{
0, y < −SLt,

−(σ − 1)ρuS
2
L, y > −SLt,

(3.1)

where σ = ρu/ρb > 1 is the thermal expansion coefficient. For a typical σ =6, the
velocity increases fivefold as the gas expands and there is a drop in pressure which,
when compared to the ambient pressure, constitutes a small change of the order of
the square of the Mach number. A linear stability analysis of the planar solution
(Markstein 1964) yields the dispersion relation

(σ + 1) ω2 + 2 (1 + Lk) σkSLω − (σ − 1 − 2Lσk) σk2S2
L = 0 (3.2)

for the growth rate ω of a disturbance of wavenumber k. This relation reduces to the
Darrieus–Landau result when L = 0, in which case

ω = ωDLSLk, ωDL ≡ −σ +
√

σ 3 + σ 2 − σ

σ + 1
,

so that perturbations of all wavelengths grow and the instability increases indefinitely
with increasing wavenumber. The hydrodynamic instability results from the gas
expansion and the growth rate increases with increasing σ and vanishes as σ → 1.
When L 
= 0, the growth rate is given by

ω =

{
−σ (1 + Lk)

σ + 1
+

1

σ + 1

√
σ 3 + σ 2 − σ + (Lk − 2σ ) Lkσ 2

}
SLk.

It can be easily verified that for L < 0 the plane flame remains unconditionally
unstable with disturbances growing at a rate ω higher than ωDL. In contrast, for
L > 0 the model has stable and unstable ranges of wavenumber. Long-wavelength
disturbances still grow while short-wavelength disturbances are stabilized. The
stabilization mechanism is readily understood – the enhanced flame speed at the crests
(κ < 0) as viewed from the unburnt side, and similarly the reduced speed at the troughs,
tend to reduce the amplitude of the corrugations and flatten out the perturbed
flame. The critical wavenumber is given by kc = (σ − 1) /2Lσ and the corresponding
wavelength is λc = 4πLσ/ (σ − 1). Accordingly, disturbances with wavelength λ< λc

are stable and those with λ> λc are unstable. The wavelength of the most amplified
disturbance is determined by setting dω/dk = 0.

The planar flame is unconditionally stable in a finite domain of width L < λc,
because no linearly unstable mode of this solution fits in this domain. If L represents
the characteristic transverse dimension it is convenient to introduce the scaled
Markstein number

α ≡ L/(σ − 1)L, (3.3)

so that stability is ensured when α > (4πσ )−1 ≡ αc. Note that α = O(δ) and, since
equation (3.2) is valid for δ � 1, the dispersion relation may be written as

ω ∼ ωDLSLk − σ (σ + ωDL)

σ + (σ + 1) ωDL

LSLk2 .
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This expression is similar in form to the dispersion relation obtained asymptotically
using the more complete hydrodynamic model (Matalon & Matkowsky 1982;
Pelce & Clavin 1982), except that the latter provides a more accurate expression
for the O(k2) term and, in particular, relates the Markstein length L to fundamental
physicochemical parameters, namely molecular and thermal diffusivities, overall
activation energy and reaction orders of the chemical scheme, mixture equivalence
ratio and burnt-to-unburnt density contrast. Viscous effects were found to play a
secondary role in stability, which a posteriori justifies their being neglected in the
analysis leading to (3.2).

Beyond the linear growth, when the unstable modes have grown to sufficiently large
amplitudes, nonlinear effects may no longer be neglected. The complete reactive
Navier–Stokes equations must then be solved numerically but, as noted in the
Introduction, only a few such studies have been reported in the literature. Analytical
insight may be achieved in the weakly nonlinear regime, by assuming that σ − 1 � 1.
Since in this limit the Darrieus–Landau growth rate ωDL ∼ (σ − 1) /2 is relatively
small, the evolution is described on the slow timescale τ = (σ − 1) t with the perturbed
front expressed in the form

y = −SLt + (σ − 1) φ, φ = φ(x, τ ). (3.4)

We have restricted attention here to the two-dimensional case, but the extension to
three dimensions is straightforward. If, for consistency, velocities and pressure are
re-scaled as v = (σ − 1)2ṽ and p =(σ − 1)2p̃, the flame speed relation (2.5) yields

φτ +
1

2
SLφ2

x − LSL

σ − 1
φxx − ṽ∗ = o(σ − 1)2 (3.5)

where subscripts denote differentiation and ṽ∗ is the axial velocity component
evaluated at the unburnt side of the flame front. The reduced Euler equations,
correct to O(σ − 1)2, can be solved to give

ṽ∗ =
1

4π

∫ ∞

−∞

∫ ∞

−∞
|k| eik(x−ξ ) φ(ξ, τ ) dk dξ ≡ 1

2
I{φ},

which when substituted into (3.5) yields a single nonlinear integro-differential equation
for the determination of the flame displacement φ. Let L, the transverse domain of
integration, be used as a unit of length, SL as a unit of speed and L/SL as a unit of
time, the evolution equation in dimensionless form becomes

φτ + 1
2
φ2

x − αφxx − 1
2
I(φ) = 0. (3.6)

This equation is known as the Michelson–Sivashinsky (MS) equation after the
authors who derived it and also provided the first numerical integration (Sivashinsky
1977; Michelson & Sivashinsky 1977). The operator I {φ} is a linear, singular, non-
local operator which constitutes a multiplication by |k| in the Fourier space; i.e.
I{cos(kx)} = |k| cos(kx). It may also be expressed as the Hilbert transform (denoted
by H) of the derivative of φ, namely I {φ; x} = −H {φx; x}.

On the finite domain 0 � x � 1 with periodic boundary conditions, the MS equation
admits exact solutions of the form

φ = −Uτ + Φ(x), (3.7)

which correspond to steadily propagating patterns, namely they propagate (in the
direction φ < 0) at a constant speed U without change in shape. Upon taking the
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spatial average, the MS equation yields

U = 1
2

〈
Φ2

x

〉
≡ 1

2

∫ 1

0

Φ2
x dx, (3.8)

so that the fractional increase in propagation speed is equal to the fractional increase
in surface area of the flame front. The solutions of the form (3.7) are obtained by
a pole decomposition technique (Thual, Frish & Henon 1985; Vaynblat & Matalon
2000a, b), and of particular interest is the set of coalescent pole solutions for which all
the poles, zn = xc ± iyn, are aligned parallel to the imaginary axis with xc the common
real part. The members of this family are distinguished by the number of poles N (or
more precisely the number N of pairs of complex-conjugate poles) that contribute to
the solution, and take the form

Φ
N
(x) = −2α

N∑
n=1

ln 1
2
[cosh(yn) − cos(2πx − xc)].

The imaginary parts of the poles, yn, are the solutions of N nonlinear algebraic
equations

coth yn +

N∑
l 
=n; l=1

coth
[

1
2
(yn − yl)

]
+ coth

[
1
2
(yn + yl)

]
=

1

4πα
, n = 1, . . . , N.

Although simple expressions can be written for N = 1 and 2, the yn for N > 2
are calculated numerically; see Vaynblat & Matalon (2000a). The pole solutions
correspond to cusp-like structures, with the (common) real part of the poles xc

representing the location of the ‘cusp’ and the imaginary part representing its
height. The flame front shown in figure 2 is a representative pole solution, extended
periodically in x. The propagation speed for the N -pole solution is obtained from
(3.8) as

U
N

= 2πNα(1 − 4πNα). (3.9)

To discuss the properties of the pole solutions it is convenient to introduce the
reciprocal of the Markstein number, γ = (2πα)−1, which is directly proportional to the
transverse size of the domain of integration. For a given γ , there is an upper bound
on the number of poles that a member of the family of coalescent pole solutions
possesses, i.e. N � N0 (γ ). The trivial solution Φ =0, which may be considered as the
zero-pole solution, exists for all γ > 0. At γ = 2 the one-pole solution emerges as a new
bifurcating solution; at γ = 6 the two-pole solution branches out and, in general, the
N -pole solution bifurcates from the (N−1)-pole solution at γ = 2(2N − 1). Of greatest
importance are the stability results of Vaynblat & Matalon (2000a, b), which show that
for any value of γ there exists one and only one asymptotically stable coalescent pole
solution, and that the stable solution corresponds to the one with the maximum num-
ber of poles N0(γ ). Accordingly, the planar flame front, or zero-pole solution, is the
stable solution for γ < 2, the one-pole solution is the stable solution for 2 < γ < 6, the
two-pole solution is the stable solution for 6 <γ < 10, etc . . . . As γ increases, the stable
equilibrium states of the MS equation undergo a cascade of supercritical bifurcations
corresponding to structures of deeper and deeper ‘cusps’ that propagate at a speed that
increases with increasing γ and asymptotes to a constant value U∞ = 1/8. As γ → ∞
(or α → 0), the shape of the solution tends to a genuine cusp (of finite amplitude) that
propagates at a speed U∞. The dependence of the speed U on γ is shown in figure 8(a).

The stability properties discussed above imply that, for a given γ, the long-time
behaviour of the solution of the MS equation, starting with arbitrary initial data,
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Figure 3. Development of the flame front profile φ(x, τ ), based on the MS equation for
α = 0.005, starting with arbitrary initial data. The small disturbances introduced through the
initial conditions merge, forming bigger cells which eventually coalesce into a single-peak
structure that coincides with the pole solution (N = 8), shown in the figure as the dotted curve.

would converge to the steady propagating N0 -pole solution. In a typical numerical
experiment, as illustrated in figure 3 for α = 0.005, the short-wavelength corrugations
introduced through initial disturbances merge, forming bigger cells as time progresses
which eventually coalesce into a single-peak structure filling up the entire interval
(see also Michelson & Sivashinsky 1977; Gutman & Sivashinsky 1990). The solution
appears to converge to the corresponding pole solution (N =8) illustrated in the
figure by the dotted curve. Hence, for moderate values of γ the flame develops into
a relatively large single-peak structure which, in dimensional form, has a wavelength
comparable to L and amplitude proportional to σ − 1. The transverse dimension L is
generally much larger than the wavelength corresponding to the most amplified small
disturbance predicted by the linear theory. The cusp-like structure propagates in the
negative y-direction at a constant speed without further change in shape.

The general structure of the solution is retained in computations carried out for
large γ (small α) except that now small wrinkles appear repeatedly on the flame front,
the speed of propagation varies continuously in time and the solution does not settle
to a steadily propagating state. This is illustrated in figure 4 for α = 0.002, computed
with the same spatial resolution as figure 3. (The solution in both cases was computed
using a spectral method; the numerical scheme is described below in § 4.3). Although
the short-wavelength corrugations introduced through the initial disturbances merge
to form a large single-peak structure, small-scale wrinkles keep appearing on the
flame front, contaminating its surface. It has been tempting to associate this peculiar
behaviour with a secondary instability that occurs at a critical value of α (Rahibe,
Aubry & Sivashinsky 1998), but this was proven incorrect – the stability results
of the pole solutions imply that a single-cusp structure in a finite domain L is
unconditionally stable no matter how large L is. Therefore, the unsteady structure in
the numerical simulation does not represent a self-sustained phenomenon, but rather
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Figure 4. Development of the flame front profile φ(x, τ ), based on the MS equation for
α = 0.002, starting with arbitrary initial data. The small disturbances introduced through the
initial conditions merge, forming bigger cells which eventually coalesce into a single-peak
structure, but the solution never settles into a steady state as small-scale wrinkles keep
appearing sporadically on the flame front.

an acute sensitivity to numerical noise, as suggested by Joulin (1989). The unsteady
pebbly structure observed experimentally on the propagation fronts of sufficiently
large flames (Strehlow 1984; Groff 1982; Bradley et al. 2001) are not entirely the
product of initial disturbances but rather require some level of background noise
which, when amplified by the hydrodynamic instability, acts to sustain the multi-scale
nature of the flame front. The effect of noise will be further discussed below.

4. Fully nonlinear model – numerical simulations
We now address the full nonlinear problem in order to understand the effects of

finite-amplitude disturbances and realistic values of thermal expansion σ on flame
dynamics. We start with a brief discussion of the numerical approach used in solving
the free-boundary problem (2.1)–(2.5).

4.1. Numerical scheme

The numerical scheme is based on a continuum approach where singular sources and
discontinuities are smoothed properly over several computational grid cells. For the
density, the distribution

ρ(ψ) = ρu + 1
2
(ρb − ρu)

[
1 + tanh

ψ

h

]
(4.1)

centred at the flame front is chosen, with h the grid size. For a typical value of σ =6,
for example, the density reaches the constant values ρu and ρb to within 99% in a
distance of four grid cells. The flame sheet ψ(x, t) = 0 is now a level set of the density
distribution function corresponding to ρ = (ρu + ρb)/2. Conservation of mass across
the sheet is satisfied by introducing a source term to the divergence-free relation (2.1),
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namely

∇ · v = ρu Sf

∂

∂n

(
1

ρ

)
, (4.2)

where ∂/∂n denotes the directional derivative along the normal to the sheet. A small
viscous term is added to the momentum equation (2.2) in order to introduce a small
degree of dissipation in the system. Thus

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p + µ∇2v, (4.3)

where µ is the viscosity of the mixture. In the calculations reported below we have
taken a large Reynolds number, Re = 105, to effectively simulate an inviscid flow,
and verified that no significant change occurs when it is increased to Re = 106.
It is easy to see that, when h → 0, the density distribution (4.1) approaches the
piecewise-constant function (2.3), and equations (4.2)–(4.3) reduce to (2.1)–(2.2) with
the jump relations (2.4) automatically satisfied. Finally, the propagation law (2.5)
yields an evolution equation

ψt + v∗ · ∇ψ = Sf |∇ψ | (4.4)

for the shape and location of the flame sheet ψ(x, t) = 0, where

Sf = SL [1 + L ∇ · (∇ψ/ |∇ψ |)]. (4.5)

Equations (4.2)–(4.3) were solved using the variable-density IAMR code developed
at the Lawrence Berkeley National Laboratory for solving the incompressible Navier–
Stokes equations of a variable-density flow modified appropriately for the additional
source terms. The algorithm in this code uses a fractional step approach, with
second-order upwind Godunov methodology for the advection step, Crank–Nicolson
discretization of the viscous and diffusive terms, and a variable-density approximate
second-order projection to impose the divergence constraint (Almgren, Bell &
Szymczak 1996). A level-set method is used as a front-capturing technique, with
the propagation velocity extension algorithm proposed by Sethian (1996). In order to
stabilize the scheme, upwind and central difference schemes are used for the convective
and diffusive terms, respectively. Note that in solving (4.4) it is necessary to evaluate
v∗ on the Langragian mesh representing the flame surface and this is accomplished in
the spirit of the immersed boundary method of Peskin (1977). Further details about
each of these steps can be found in Rastigejev & Matalon (2006).

4.2. Effect of thermal expansion

Most of the results presented below are based on simulations carried out on a
computational domain [0, 1] × [0, 2], using 256 points/unit length, with periodic
boundary conditions applied to the sidewalls. For large values of α a coarser grid
was sufficient to ensure high enough accuracy.

To establish the accuracy of the numerical scheme, we first consider σ = 1.1 and
compare the flame shape of the steady state, obtained as the long-time behaviour of
the computed solution, with the corresponding profile of the exact pole solution
ΦN (x). The results are illustrated in figure 5 for the two values α = 0.02 and
0.007, corresponding to N = 2 and N = 6 respectively, with the numerical simulations
represented by solid curves and the analytical pole solutions by dotted curves. For
proper comparison, the computed flame shape profile has been re-scaled with respect
to σ − 1 (see (3.4)). A very good agreement exists for α =0.02, as expected. For the
smaller value of α the agreement is quite good and could have been improved if the
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Figure 5. Comparison between the steady-state solutions computed based on the full
nonlinear model (solid curves) and the exact pole solutions of the MS equation (dotted
curve), for several values of σ with (a) α =0.02, (b) α = 0.007.

simulation had been carried out on a finer grid. The figure also shows flame profiles
for two other values of thermal expansion. For σ = 1.5 the computed results are
quantitatively close to the pole solutions even though the ‘small parameter’ σ −1 = 0.5.

For σ = 6, however, the results are markedly different and will be discussed below.
We now turn attention to more realistic values of the thermal expansion and choose

σ = 6 for illustrative purpose. The time evolution of an initial cosine perturbation
is shown in figure 6 for the three values α = 0.005, 0.0025, 0.001. The flame front
profile is plotted for consecutive times, starting from the top figure, over the time
intervals specified in the figure caption. For consistency the scaled time τ has been
used as reference. For α = 0.005 a smooth cusp-like structure develops early on and
propagates at a constant speed without further change in shape. A similar behaviour
occurs when α = 0.0025, but the transient behaviour in this case extends over a slightly
longer time and a smooth structure develops only at τ ≈ 12–14. For α = 0.001 the
flame profile does not seem to converge to a smooth surface, even after a sufficiently
long time (0 � τ < 15). Although the overall shape is similar to the single-peak
structure observed for the larger values of α, the flame does not reach a steady state.
Even when it appears that a single-peak structure has developed (for τ ≈ 13, for
example), small wrinkles develop sporadically on the flame front as it propagates
further, contaminating its surface. This becomes more evident in figure 7, where a
smaller value of α =0.0005 was selected. It is interesting to note that, as α decreases,
the cusp appears sharper and sharper and the ‘parabolic’ convex part of the flame
gets flatter, as predicted by the exact pole solutions. A closer examination of the result
indicates that the wrinkles appear first on the troughs, where the curvature is relatively
weak, and propagate along the surface towards the crest where they are annihilated.

We have just seen that for values of α that are not too small, the flame profile settles
to a steady state. The long-time behaviour of the solution for α = 0.02 and 0.007 is
shown in figure 5 for σ = 6. For α = 0.02 the flame regains its planar shape since
α > αc ≈ 0.0133. But for α = 0.007 a cusp-like structure does emerge as expected. It
should be noted that, when comparing with the profiles for the smaller values of σ ,
the graph must be amplified by the factor σ − 1. For realistic values of σ the solution
has, therefore, a significantly larger amplitude: Φmax ≈ 0.25 for σ = 6 compared to
the value 0.2 predicted by the pole solution.
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Figure 6. The time evolution of an initial cosine perturbation for the three values: (a) α =
0.005, (b) α =0.0025 and (c) α = 0.001 with σ = 6. The (scaled) flame profiles are plotted at
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(0, 15).
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Figure 7. The time evolution of an initial cosine perturbation for α =0.0005 with σ = 6.
The (scaled) flame profiles are plotted for consecutive times (left to right) over the interval
τ ∈ (0, 10).

The small-scale unsteady behaviour uncovered for small α is similar to what has
been observed in numerical simulation of the MS equation, except that for the more
realistic values of σ just presented the first appearance of the small-scale wrinkles on
the surface of the flame front (for a given grid resolution) occurs at a much smaller
value of α. This unsteady behaviour is apparently associated with the amplification
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Figure 8. The (scaled) incremental increase in propagation speed U as a function of 1/α. The
results in (a) are plotted for values of σ near one, and are compared to the the exact pole
solution of the MS equation (solid curve). The results in (b) are plotted for σ = 3 and 6. Note
that in dimensional form the speed is amplified by a factor (σ − 1)2.

of background noise coupled to the hydrodynamic instability, an assertion that will
be further discussed below.

As noted earlier, a planar propagating flame loses stability at 1/αc = 4πσ giving rise
to a steadily propagating cusp-like structure. The incremental increase in propagation
speed of the corrugated front for 1/α > 1/αc is shown in figure 8 for several values
of σ . The ordinate in this figure represents the scaled increment in speed U , which in
dimensional form is given by

Û = (σ − 1)2USL,

so that the corrugated front propagates as a whole in the negative y-direction with
a speed SL + Û . Figure 8(a) corresponds to values of σ sufficiently close to one and
allows a comparison with the exact pole solution of the MS equation represented
by the solid curve. For σ =1.1 the results of the numerical simulations are in very
close agreement with the exact solution. The incremental change in speed increases
with increasing 1/α and tends asymptotically to U∞ =0.125. A similar behaviour
is seen for σ = 1.5; the incremental speed here tends asymptotically to U∞ ≈ 0.06.
Figure 8(b) shows the results of the numerical simulations for σ =3 and 6. They are
qualitatively similar to those predicted by the MS model, with U increasing from zero
at the bifurcation point 1/αc (which increases with increasing σ ) tending respectively
to U∞ ≈ 0.0165 and 0.006 as 1/α → ∞. This amounts to an increase in speed of
7–15% for the two cases presented.

Figure 9 shows the dependence of the incremental increase in propagation speed
on thermal expansion for a given Markstein number L/L. Two separate graphs are
shown for two separate range of σ . Results are only presented for values of α that
yield steadily propagating structures, namely values of α that are not too small (see
also the discussion in the next section). Consequently, the smaller the range of σ − 1,
the smaller the lower bound on L/L. The dependence of the propagation speed on
thermal expansion appears nearly linear. This result is consistent with the prediction
(3.9) of the MS equation which, when expressed in dimensional form and use is made
of the definition (3.3) of α, shows that the propagation speed is a piecewise-linear
function of σ . The dependence on thermal expansion also appears independent of
small changes in the Markstein number. Indeed, as shown in figure 8, except for near
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Figure 10. Flow field, depicted by velocity vectors, across a corrugated flame front
represented by the solid curve; calculated for σ = 6 and α = 0.007.

the bifurcation point 1/αc, the propagation speed U reaches a plateau and remains
nearly independent of further changes in α.

Although the emphasis in this work has been on the evolution of the flame front, our
computations also provide accurate information about the flow field, as illustrated
in figure 10. The velocity vectors in the figure clearly show the deflection of the
streamlines upon crossing the flame front, and that the flow remains uniform far
upstream and far downstream, as it should.

4.3. Effect of external noise

In order to investigate the effect of external noise on flame dynamics consistently,
the amount of numerical noise must be reduced significantly so as not to affect the
dynamics of the propagating flame. The calculations must be therefore performed on
a very fine mesh. As shown below, even for relatively large values of α, when the
flame front becomes sensitive to external noise, a grid of as many as 8000 points
is needed to prevent the wrinkling of the flame interface. Because of limitations in
computational resources this resolution cannot be achieved in the two-dimensional
simulations based on the full nonlinear model. Our investigation will therefore be
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Figure 11. Flame profiles computed based on the MS equation for α = 0.002 with (a) N =512,
(b) N = 2048 and (c) N = 8192 Fourier modes for consecutive times with time intervals
�τ = 0.04.

carried out within the context of the one-dimensional simplified MS model which, as
already noted, exhibits qualitatively the same phenomenon.

The MS equation (3.6) has been solved numerically using a Galerkin method. The
function φ(x) on 0 <x � 1 is represented at the uniformly distributed collocation
points xn = n/N , where n= 1, . . . , N , by the Fourier truncated series

φ(xn, τ ) =

N/2∑
k =−N/2+1

ak(τ ) e2πi nk/N ,

with coefficients

ak(τ ) =
1

N

N/2∑
n=−N/2+1

φne
−2πi nk/N ≡ Pk[φ], φn ≡ φ(xn, τ ).

Substituting into equation (3.6) yields

dak

dτ
+ 1

2
Pk[(Dφ)2] + 4π2k2ak − π|k|ak = 0, k = −N/2 + 1, . . . , N/2,

where

Dφ = 2πi

N/2∑
k =−N/2+1

ak(τ )k e2πi nk/N

is the approximation of φx. When solving these equations, the linear and nonlinear
terms were discretized respectively with Crank–Nicolson and Adams–Bashforth
approximations, resulting in a second-order-accurate scheme (in time). In the
calculations presented below a time step �τ = 10−5 was used.

Numerical experimentation has been carried out to investigate the dynamics of the
small-scale wrinkles that were seen to appear sporadically on the flame surface for
small values of α. The appearance of wrinkles was found to be highly sensitive to
the level of numerical noise, which is reduced by increasing the number of Fourier
modes used in the Galerkin approximation. This is illustrated in figure 11 showing
flame profiles calculated for α = 0.002, corresponding to a 20-pole solution, with three
different grid resolutions. Three to four wrinkles are present at any time when 512
Fourier modes are used, but only one to two wrinkles are present when 2048 Fourier
modes are used. With N =8192 Fourier modes, there are very few wrinkles during the
entire time interval shown in the figure and, although they seem to disappear towards
the end of this time interval, new wrinkles will reappear if one waits long enough.
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Figure 12. Flame profiles computed based on the MS model for α = 0.004 with N = 512
Fourier modes. The profiles are shown for consecutive times with time intervals �τ = 0.178.
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Figure 13. Flame profiles computed based on the MS model for α = 0.004 with N = 8192
Fourier modes. The profiles are shown for consecutive times with time intervals �τ = 2.

The number of wrinkles retained on the flame surface during a given time interval is,
therefore, sensitive to the level of numerical noise.

Next, we present three sets of numerical simulations with a somewhat larger
α = 0.004, corresponding to a 10-pole solution. For the first simulation a relatively
low number of Fourier modes N1 = 512 was used. Wrinkles begin to appear in this
case at approximately τ =50. In figure 12 flame profiles are shown at consecutive
time intervals with �τ =0.178, within the time period τ =156–164. As in previous
numerical simulations, the wrinkles originate at the troughs and propagate along the
flame surface towards the crest where they eventually disappear.

For the second simulation, a large number of Fourier modes N2 = 8192 was selected.
The integration was carried out up to time τ = 1000, which is approximately 20 times
larger than in the previous numerical experiment, and no wrinkles were ever observed.
The solution shown in figure 13 rapidly stabilizes to a steady state that coincides
with the 10-pole solution, as it should, and continues to propagate with a constant
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speed, without changing shape. The profiles in this figure are shown at consecutive
time interval with �τ = 2, within the time period τ = 990–1000. Note that the flame
dynamics for α = 0.004 is less sensitive to numerical noise than the flame dynamics
for α = 0.002 shown in figure 11. Next, we performed a simulation with the same
number of Fourier modes N2 = 8192 as before, after having nullified the coefficients
in the Fourier decomposition corresponding to the higher Nhigh = 8192 − 512 = 7680
frequencies, thus using only the low Nlow = 512 frequencies. The spatial resolution
achieved here is the same as for the first simulation, since the number of non-zero
coefficients Nlow is equal to the total number of Fourier modes N1. However, unlike the
first set of calculations, the so-called aliasing effect, where the solution is contaminated
by high-frequency modes which appear on the discrete grid and cannot be properly
distinguished from the correct low modes, is much lower in this case. One finds that
no wrinkles are developed even when the integration is carried out over a sufficiently
long time τ ∼ 1000, which is nearly 20 times as long as the time used in the first
simulation shown in figure 12. Despite the much lower number of Fourier modes,
the flame profiles are identical to those shown in figure 13 and will not be redrawn
again. This suggests that the numerical noise associated with aliasing is indeed
responsible for the generation of the small-scale wrinkles that develop on the flame
surface.

The last numerical experiment is performed again with N2 = 8192, but a low-
amplitude external forcing term η(xn, τ ) representing noise has been added to the
system. In Fourier space

η(xn, τ ) =

N/2∑
k =−N/2+1

bk(τ ) e2πi nk/N

with the Fourier coefficients assuming the form bk = rk (τ ) Pk [f ], where rk is a
randomly generated factor that take values in the interval −0.5 <rk < 0.5 with equal
probability, and f (x − x0) is a distribution function centred around some arbitrary
x0. In the present test we assumed a Gaussian distribution f = A exp[−β(x − x0)

2]
with A=2 × 10−8, β = 50 and chose x0 = 0.2. The noise has been introduced in the
system by adding the random bk to the Fourier coefficients ak . The results are shown
in figure 14(a) where flame profiles at consecutive time intervals �τ = 0.3 are plotted
during the time period τ = 1.5–10.5. The results clearly show the sporadic appearance
of small-scale wrinkles that closely resemble those generated by numerical noise. The
amplitude of the noise as a function of time is also shown in figure 14(b–d) at three
sample points x = 0.25, 0.5, and 0.75.

The inclusion of noise mimics to some degree the influence of background physical
noise that may result from small velocity fluctuations in the incoming flow far
upstream. It is of interest, therefore, to examine its effect on the propagation speed.
To this end, it is sufficient to consider a relatively large α, for which a steady state
can be reached, and perform calculations on a relatively crude grid. For the results
presented in figure 15 we chose α = 0.005 and used a level-set method with N =256
grid points. Figure 15(a) illustrates the dependence of the average propagation speed,
defined as in equation (3.8), on time. In the absence of noise, the flame stabilizes
to a steady state (corresponding to an 8-pole solution), and propagates thereafter
at a constant speed, with U ≈ 0.124 shown in the figure as a straight solid line.
The propagation speed when noise is present varies non-uniformly in time as shown
in figure 15(a). The appearance of wrinkles causes the flame to accelerate, with
the propagation speed increasing further until the wrinkles merge at the crest. The
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Figure 14. (a) Time evolution of a propagating flame subjected to external random noise
calculated based on the MS equation with α =0.005. A sample of the noise (amplitude vs.
time) introduced at the three sample locations: (a) x = 0.25, (b) x = 0.5 and (c) x = 0.75 is also
shown in the figure.

disappearance of the wrinkles is associated with a drop in propagation speed, with
the decrease in speed continuing either until the flame stabilizes to the appropriate
pole solution, or until new wrinkles appear. This development is illustrated in fig-
ure 15(b–e). Flame profiles are shown during a short time interval near the times
marked by (b–e) in (a). The times when the maximum speed is reached (marked b and
c) correspond to the moments when the pair of wrinkles merge at the crest and dis-
appear, while the times when the minimum speed is reached (marked by d and e)
correspond to the moments when a new pair of wrinkles reappears on the flame
surface. Finally, we note that on the average, the propagation speed is significantly
increased (nearly doubled) in the presence of noise.
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Figure 15. The (a) incremental increase in propagation speed of a corrugated flame subjected
to noise, as a function of time. (b–e) The flame front profiles during the short time interval
near the times marked by (b–e) in (a).

5. Conclusions
The nonlinear evolution of a perturbed premixed flame under the influence of the

hydrodynamic instability has been discussed within the context of the Michelson–
Sivashinsky equation for weak thermal expansion, σ − 1 � 1, and within the context



Hydrodynamically unstable premixed flames 391

of a fully nonlinear hydrodynamic model for realistic values of thermal expansion,
σ −1 =O(1). It was shown that the short-wavelength disturbances introduced through
the initial conditions tend to merge, forming bigger corrugations which eventually
coalesce into a single-peak structure (a cell) of transverse dimension L. The resulting
cell size L is significantly larger than the wavelength of the most amplified disturbance
predicted by the linear theory, and is determined by the overall dimension of the
system. The flame shape, therefore, takes the form of wide and relatively flat troughs
separated by narrow sharp crests that closely resemble the surface of experimentally
observed flames. When the transverse dimension L is not too large, these structures
are stable and propagate as a whole at a constant speed, larger than the speed of a
planar flame. The propagation speed first increases as the Markstein number increases,
but it quickly reaches an asymptote so that the relative increment in speed becomes
independent of the mixtures’s composition and of the lateral size. The dependence of
propagation speed on thermal expansion is nearly linear.

When the transverse dimension L is large, the flame dynamics becomes sensitive to
external noise. A low level of permanent noise provides small disturbances which are
rapidly magnified by the hydrodynamic instability, resulting in small-scale wrinkles
that appear sporadically on the flame, propagate along its surface, and disappear at the
crests. A significant increase in overall speed associated with this complex, multi-scale
structure results. This may explain the experimentally observed unsteady pebble-like
structures on the propagation fronts of sufficiently large flames and the associated
large increase in propagation speed. External noise may result, for example, from a
weakly turbulent flow. If the turbulence scale is relatively large, the flow does not
affect the internal flame structure and the flame may be viewed as a surface of density
discontinuity, well within the realm of the present model. The turbulence provides
a permanent level of noise that enables the sustaining of the multi-scale nature
of the flame surface. This conjecture clearly requires a more detailed investigation;
the numerical algorithm should be adjusted by introducing stochastic sources into
the governing equations that more closely mimic ‘physical noise,’ and the numerical
procedure should ensure that the energy associated with the simulated noise remains
larger than the energy associated with the numerical noise.

This work has been partially supported by the National Science Foundation under
grants DMS-0405129 and CTS-0074320.
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